
Variational Autoencoders

Amaires@May 2024

A Variational AutoEncoder (VAE) is an approach to generative modeling. In addition to its capability to generate new samples within
the same population as existing ones, it provides a probabilistic way of describing samples in a latent space.

1 K-L Divergence
Generative modeling relies heavily on metrics of similarities between two distributions, among which the most commonly used is called the
K-L divergence, short for Kullback–Leibler divergence. It is defined below for two distributions with probability density functions p1(x)
and p2(x):

KL(p1(x), p2(x)) =

∫
p1(x) log

p1(x)

p2(x)
dx (1)

K-L divergence has two important properties.

1. It is obvious that K-L divergence is not symmetric in terms of p1(x) and p2(x).

2. It is always non-negative, and it is 0 iff p1(x) and p2(x) are the same everywhere. To see why, we can break DL-divergence into two
parts:

KL(p1(x), p2(x)) =

∫
p1(x) log

p1(x)

p2(x)
dx

=

∫
p1(x)logp1(x)dx−

∫
p1(x)logp2(x)dx

= −
∫
p1(x)logp2(x)dx− (−

∫
p1(x)logp1(x)dx) (2)

The second term in (2), with the negative sign, is p1’s information theoretic entropy. The first term, also with the negative sign, is the
cross entropy between p1 and p2. The first term is always no smaller than the second term per Gibb’s inequality.

2 Intuition
The concept of autoencoders predate the VAE. An autoencoder, shown in Figure 1, consists of an encoder Eφ and a decoder Dθ. Eφ, a
deep neural network parameterized by φ, takes a sample x from population X and maps it to z = Eθ(x) in Z. Dθ, another deep neural
network parameterized by θ, aiming to reconstruct x, takes z as input and maps it to x̃ = Dθ(z) = Dθ(Eφ(x)). Z is usually of a lower
dimension than X , and thus Eφ is considerd to posess some compression capability and unsupervised feature extraction capability.

The training of an autoencoder minimizes the reconstruction loss: the expected L2 distance between x and x̃:

min
θ,φ

1

n

∑
i

‖xi − x̃i‖2 = min
θ,φ

1

n

∑
i

‖xi −Dθ(Eφ(xi))‖2

Once trained, the decoder Dθ, to some extent, is already a generative model in that it can create samples in X given a sample z. The
distribution of z or even the range of z, however, is unknown, which prevents its effective sampling. Ideally, we’d like z to follow some

Encoder

Eφ

Decoder

Dθ

x4 z4 x̃4

x3 z3 x̃3

x2 z2 x̃2

x1 z1 x̃1

Figure 1: Autoencoder

1

Encoder

Eφ

Decoder

Dθ

Sampler

S

x4 µφ, σ
2
φ z4 x̃4

x3 µφ, σ
2
φ z3 x̃3

x2 µφ, σ
2
φ z2 x̃2

x1 µφ, σ
2
φ z1 x̃1

Figure 2: Variational autoencoder

simple distribution, such as N(0, I), as it is easy to sample from. As summarized in Figure 2, VAE makes a few changes to the autoencoder
architecture to make Dθ able to take samples from N(0, I) as input and map them to X.

• Instead of giving out concrete samples in Z, Eφ outputs the parameters for the probability density function pφ(z|x).

• pθ(z|x) is required to be a multivariant normal distribution with independent components. That is, pθ(z|x) = N(µφ(x), σ
2
φ(x)) where

σ2
φ(x) is a diagonal matrix.

• µφ(x) is penalized for being different from 0, and σ2
φ(x) for being different from I. With this penalty, pθ(z|x) approximately follows

N(0, I), so does p(z) as p(z) =
∫
p(x)p(z|x)dx =

∫
p(x)N(z; 0, I)dx = N(z; 0, I).

• A new sampler component S is introduced which, given µφ(x) and σ2
φ(x), draws a sample z ∼ N(µφ(x), σ

2
φ(x)). z is then fed to the

decoder Dθ, just as in a regular autoencoder.

How exactly are µφ(x) and σ2
φ(x) penalized? Compute the K-L divergence between N(µφ(x), σ

2
φ(x)) and N(0, I) as below:

KL(N(uφ, σ
2
φ), N(0, I)) =

∫
N(uφ, σ

2
φ) log

N(uφ, σ
2
φ)

N(0, I)

=
1

2

d∑
k=1

(µ2
φ,k + σ2

φ,k − log σ2
φ,k − 1) (3)

In (3), d is the dimension of Z. Removing the constants from (3) and estimating it with samples, our final K-L divergence loss is

min
φ

1

n

∑
i

d∑
k=1

(µ2
φ,k(xi) + σ2

φ,k(xi)− log σ2
φ,k(xi)) (4)

The reconstruction loss for VAE, is also slightly different from that for a regular autoencoder. It can be estimated by the following
equation, given a function S(µ, σ2) that returns a sample from N(µ, σ2).

min
θ,φ

1

n

∑
i

‖xi − x̃i‖2 = min
θ,φ

1

n

∑
i

∥∥xi −Dθ(S(µφ(xi), σ
2
φ(xi)))

∥∥2
This formulation has one big problem. S(·, ·) is not differentiable, which makes the reconstruction loss not amenable to back-propagation

based optimization. Luckily, it is easy to rewrite S(µφ(xi), σ2
φ(xi)) as µφ(xi) + S(0, I)� σφ(xi), where � is the element-wise product and

σφ(xi) is σ2
φ(xi)’s diagonals arranged in a vector form, by leveraging the reparameterization trick for normal distributions. The final

formulation for the reconstruction loss therefore is

min
θ,φ

1

n

∑
i

‖xi − x̃i‖2 = min
θ,φ

1

n

∑
i

‖xi −Dθ(µφ(xi) + S(0, I)� σφ(xi)))‖2 (5)

The total loss combines the K-L divergence loss in (4) and the reconstruction loss in (5) with a weight hyperparameter λ:

min
θ,φ

(
1

n

∑
i

‖xi −Dθ(µφ(xi) + S(0, I)� σφ(xi)))‖2) + λ
1

n

∑
i

d∑
k=1

(µ2
φ,k(xi) + σ2

φ,k(xi)− log σ2
φ,k(xi)) (6)

λ controls the relative importance between reconstructing the original samples and making sure z follows N(0, I). It is likely that
different data sets require different λ.

In practice, instead of outputting σ2
φ(xi), Eφ outputs log σ2

φ(xi), but that is only a minor engineering detail.

2

3 Bayesian View
This section derives the total loss objective function through a Bayesian view.

The maximum likelihood method is often used to optimize a neural network that takes samples xi as input and produces pθ(xi).
Assuming each of these xi are i.i.d samples, the likelihood of observing all of them is p(x1, x2, x3, · · · , xn) =

∏
pθ(xi). The training

objective is to maximize
∏
pθ(xi), which is equivalent to minimizing the expected negative log odds:

min
θ
− 1

n

∑
i

log pθ(xi)

Considering for now only the decoder Dθ part of VAE. It maps a sample z to x̃, but it can also be viewed as spitting out parameters for
pθ(x|z). More specifically it spits out µθ(z), the parameters in N(x;µθ(z), I). If the maximum likelihood method is to be used for finding
the optimal θ, pθ(x) is needed which can be calculated this way: pθ(x) =

∫
pθ(x, z)dz =

∫
p(z)pθ(x|z)dz = Ez∼p(z)pθ(x|z). Estimating

pθ(x) this way, however, is intractable due to the number of dimensions z potentially has.
Assuming there is an effective way of sampling z that follows a distribution pφ(z|x), which may or may not be equal to pθ(z|x), pθ(x)

can be calcualted the following way:

pθ(x) =

∫
pθ(x, z)dz =

∫
pφ(z|x)

pθ(x, z)

pφ(z|x)
dz = Ez∼pφ(z |x)

pθ(x, z)

pφ(z|x)

Note that in the derivation above, the only requirement of pφ(z|x) is to be a valid probability density function. Is there such a pφ(z|x)
that is easy to sample from? Yes, that is exactly the responsibility of VAE’s encoder Eφ which takes in x and spits out the parameters for
normal distribution pφ(z|x): µφ(x) and σ2

φ(x).
With pθ(x) estimated this way, log pθ(x) becomes:

log pθ(x) = logEz∼pφ(z |x)
pθ(x, z)

pφ(z|x)

3.1 Change of Optimization Objective
With all the derivation steps, it is still not clear how to calcuate log pθ(x) precisely.

Given log(·) is a concave function, Jensen’s inequality states that logE(x) > E(log(x)). We thus have:

log pθ(x) = logEz∼pφ(z |x)
pθ(x, z)

pφ(z|x)
> Ez∼pφ(z |x) log

pθ(x, z)

pφ(z|x)

It is now possible to estimate the right hand side of the inequality, broadly known as the Evidence Lower BOund (ELBO), which
can be rewritten further:

ELBO = Ez∼pφ(z |x) log
pθ(x, z)

pφ(z|x)

= Ez∼pφ(z |x) log
pθ(x|z)p(z)
pφ(z|x)

= Ez∼pφ(z |x)[log pθ(x|z) + log p(z)− log pφ(z|x)]
= Ez∼pφ(z |x) log pθ(x|z)−KL(pφ(z|x), p(z)) (7)

Since p(z) = N(0, I), the second term in (7), as already calculated by (3) in Section 2, is:

KL(pφ(z|x), p(z)) =
1

2

d∑
k=1

(µ2
φ,k + σ2

φ,k − log σ2
φ,k − 1)

At the beginning of this section, pθ(x|z) is already required to take the form of N(µθ(z), I) which means:

log pθ(x|z) = log(2π)−
d
2 exp(−1

2
‖xi − µθ(z)‖2) = const− 1

2
‖xi − µθ(z)‖2

If in the process of estimating Ez∼pφ(z|x) log pθ(x|z), only one single sample z drawn which is equal to µφ(xi) + S(0, I)� σφ(xi), the first
term in (7) gives

Ez∼pφ(z |x) log pθ(x|z) ≈ const− 1

2
‖xi − µθ(µφ(xi) + S(0, I)� σφ(xi)))‖2

Putting the maximum likelihood and the two terms of the ELBO together, we’ve arrived at:

3

min
θ
− 1

n

∑
i

log pθ(xi) ≤ min
θ,φ
− 1

n

∑
i

ELBO

= min
θ,φ
− 1

n

∑
i

(const− 1

2
‖xi − µθ(µφ(xi) + S(0, I)� σφ(xi)))‖2 + const− 1

2

d∑
k=1

(µ2
φ,k + σ2

φ,k − log σ2
φ,k))

= const +
1

2
· 1
n

∑
i

(‖xi − µθ(µφ(xi) + S(0, I)� σφ(xi)))‖+
d∑
k=1

(µ2
φ,k + σ2

φ,k − log σ2
φ,k))

Removing the constants and 1
2 , our final optimization objective shown above is identical to (6) in Section 2, keeping in mind that

• µθ and Dθ are the same funcion, and

• with this theoretical foundation, the need for a λ is also eliminated.

3.2 The ELBO gap
Since the optimization objective is changed from the log likelihoods to the ELBO, it is helpful to understand the gap betwen the two.

log pθ(x)−Ez∼pφ(z |x) log
pθ(x, z)

pφ(z|x)
= Ez∼pφ(z |x)(log pθ(x)− log

pθ(x, z)

pφ(z|x)
)

= Ez∼pφ(z |x) log
pθ(x)pφ(z|x)
pθ(x, z)

= Ez∼pφ(z |x) log
pφ(z|x)
pθ(z|x)

= KL(pφ(z|x), pθ(z|x))
> 0

The gap is 0 when pφ(z|x) and pθ(z|x) are identical.

4 Joint Distribution View
Section 3’s derivation starts from the maximum likelihood objective, and then switches to maximizing the ELBO. This section provides a
simpler joint distribution approach to derive the ELBO objective directly, inspired by Jianlin Su at http://kexue.fm.

In VAE, once trained, the decoder Dθ can be used as an independent generative model, without the encoder. The encoder can also
be used without the decoder as a descriminative model. The training process is what links both components together. It is reasonable
to require them to work on the same distribution about both x and z. That is, our objective is to minimize the K-L divergence between
pθ(x, z) and pφ(x, z):

4

min
φ,θ

KL(pφ(x, z), pθ(x, z)) = min
φ,θ

∫ ∫
pφ(x, z) log

pφ(x, z)

pθ(x, z)
dzdx

= min
φ,θ

∫ ∫
[p(x)pφ(z|x) log

p(x)pφ(z|x)
pθ(x, z)

dz]dx

= min
φ,θ

∫
p(x)[

∫
pφ(z|x) log

p(x)pφ(z|x)
pθ(x, z)

dz]dx

= min
φ,θ

Ex∼p(x)[

∫
pφ(z|x) log

p(x)pφ(z|x)
pθ(x, z)

dz]

= min
φ,θ

[Ex∼p(x)

∫
pφ(z|x) log p(x)dz + Ex∼p(x)

∫
pφ(z|x) log

pφ(z|x)
pθ(x, z)

dz]

= min
φ,θ

[Ex∼p(x) log p(x) + Ex∼p(x)

∫
pφ(z|x) log

pφ(z|x)
pθ(x, z)

dz]

= min
φ,θ

[const + Ex∼p(x)

∫
pφ(z|x) log

pφ(z|x)
pθ(x, z)

dz]

= const + min
φ,θ

Ex∼p(x)

∫
pφ(z|x) log

pφ(z|x)
pθ(x, z)

dz

= const + min
φ,θ

Ex∼p(x)

∫
pφ(z|x) log

pφ(z|x)
pθ(x, z)

dz

= const + Ex∼p(x)

∫
pφ(z|x) log

pφ(z|x)
pθ(x|z)p(z)

dz

= const + Ex∼p(x)[−Ez∼p(z|x) log pθ(x|z) + Ez∼p(z|x) log
pφ(z|x)
p(z)

]

= const + Ex∼p(x)[−Ez∼p(z|x) log pθ(x|z) + KL(pφ(z|x), p(z))]
= const + Ex∼p(x)[−ELBO]

The definition of the ELBO in Section 3 can be used to verify this.

5 Latent Space
In VAE’s training process, p(x) and p(z) = N(0, I) are given, VAE learns pφ(z|x) and pθ(x|z) simultaneously. Note however that pθ(x) is
never directly optimized to match p(x). This could be one major reason why VAE is not known to generate very realistic images.

VAE’s encoder, on the other hand, is a very reasonable feature extraction tool. Suppose there are a bunch of sample human face pictures
labelled with whether the person has large eyes or not. Denote these samples by (x, y) where x is the image, and y = 1 if the person has
large eyes and 0 otherwise. A vector e in Z calculated the following way probably captures the latent representation of large eyes.

e = Ex∼p(x|y=0)µφ(x)− Ex∼p(x|y=0)µφ(x)

Given any human face picture x, µθ(x+ λe) should generate a variation of x that has big or small eyes as λ varies.

5

