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1 Introduction
Given samples (x, y) from a distribution with probability density function p(x, y), the optimization goal of a classification problem or a
regression problem is to find a good pθ(y|x) where θ is the parameter of a chosen family of probability density functions. The objective
can be derived in three different but related ways.

1.1 K-L divergence of conditional distribution
One criterion of a good pθ(y|x) is how close it is to p(y|x). One such closeness measure is the K-L divergence between p(y|x) and pθ(y|x)
which is

∫
p(y|x) log p(y|x)

pθ(y|x)dy . Of course, this should work across all x, therefore our objective should be

min
θ

∫
p(x)[

∫
p(y|x) log p(y|x)

pθ(y|x)
dy]dx = min

θ
[

∫
p(x)[

∫
p(y|x) log p(y|x)dy]dx−

∫
p(x)[

∫
p(y|x) log pθ(y|x)dy]dx]

For our purpose, the first term is an unknown consant independent of θ. Removing this constant, our objective changes to

min
θ
−
∫
p(x)[

∫
p(y|x) log pθ(y|x)dy]dx = min

θ
−Ex∼p(x)Ey∼p(y|x) log pθ(y|x)

= min
θ
−Ex,y∼p(x,y) log pθ(y|x)

The left side of the above equation can also be written as:

min
θ
−
∫
p(x)[

∫
p(y|x) log pθ(y|x)dy]dx = min

θ
−
∫ ∫

p(x)p(y|x) log pθ(y|x)dydx

= min
θ
−
∫ ∫

p(x, y) log pθ(y|x)dydx

= min
θ
−
∫
p(y)

∫
p(x|y) log pθ(y|x)dxdy

= min
θ
−Ey∼p(y)Ex∼p(x|y) log pθ(y|x)

= min
θ
−Ex,y∼p(x,y) log pθ(y|x)

So basically, the optimization objective is the following three equivalent functions:

min
θ
−Ex∼p(x)Ey∼p(y|x) log pθ(y|x)

min
θ
−Ey∼p(y)Ex∼p(x|y) log pθ(y|x)

min
θ
−Ex,y∼p(x,y) log pθ(y|x)

1.2 K-L divergence of joint distribution
Since pθ(x, y) = p(x)pθ(x, y), it is easy to arrive at the same conclusions by minimizing the K-L divergence between p(x, y) and pθ(x, y):

min
θ

∫ ∫
p(x, y) log

p(x, y)

pθ(x, y)
dxdy = min

θ

∫ ∫
p(x, y) log

p(x)p(y|x)
p(x)pθ(y|x)

dxdy

= min
θ

∫ ∫
p(x, y) log

p(y|x)
pθ(y|x)

dxdy

= min
θ

[

∫ ∫
p(x, y) log p(y|x)dxdy −

∫ ∫
p(x, y) log pθ(y|x)dxdy]

Again, the first term is an unknown constant independent of θ that can be removed. The objective changes to

min
θ
−
∫ ∫

p(x, y) log pθ(y|x)dxdy = min
θ
Ex,y∼p(x,y) log pθ(y|x)

= min
θ

∫
p(x)[

∫
p(y|x) log pθ(y|x)dy]dx = min

θ
Ex∼p(x)Ey∼p(y|x) log pθ(y|x)

= min
θ

∫
p(y)[

∫
p(x|y) log pθ(y|x)dx]dy = min

θ
Ey∼p(y)Ex∼p(x|y) log pθ(y|x)
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1.3 Maximum likelihood
Given a set of samples (xi, yi), assumed to be i.i.d, one objective could be to maximize the likelihood of observing these samples, which is

max
θ

∏
i

pθ(xi, yi)

This is equivalent to minimizing the negative log likelihood

min−
∑
i

log pθ(xi, yi) = min
θ
−
∑
i

log p(xi)p(yi|xi)

= min
θ
−(

∑
i

log p(xi) +
∑
i

log pθ(yi|xi))

As before, the first term is an unknown constant independent of θ. Once the first term is removed, the ojective becomes

min
θ
−
∑
i

log pθ(yi|xi)

Divide it by the number of samples, and rewirte it in expectation form, the objective becomes

min
θ
−Ex,y∼p(x,y) log pθ(y|x)

This is the same as what is derived in Section 1.1 and Section 1.2.

2 Classification
In a classification problem, y takes on a fixed number of possible values usually encoded using numbers from 1 through K. A classifier
usually outputs the entire probability vector pθ(y = 1|x), pθ(y = 2|x), pθ(y = 3|x), · · · , pθ(y = K|x). In the case of a binary classification
problem, however, it is more customary to use {0, 1} to encode the two possible values that y can take, and the classifier only outputs
f(x) = pθ(y = 1|x) with pθ(y = 0|x) implied to be 1− f(x). In this case, the optimization objective can be rewritten as

min
θ
−Ex,y∼p(x,y)(y log f(x) + (1− y) log(1− f(x))

This is usual called the binary cross entropy objective.

3 Regression
In a regression problem, a neural network’s output can be interpreted as the mean µθ(x) of a normal distribution N(µθ(x), I). With this
interpretation, the optimization objective can be rewritten as

min
θ
−Ex,y∼p(x,y) log pθ(y|x) = min

θ
−Ex,y∼p(x,y) log(2π)−

d
2 exp(−1

2
‖y − µθ(x)‖2)

= −d
2
log(2π) +

1

2
min
θ
Ex,y∼p(x,y) ‖y − µθ(x)‖

2

where d is the dimension of y. This objective is equivalent to

min
θ
Ex,y∼p(x,y) ‖y − µθ(x)‖

2

which is the well known mean squared error objective.
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