Generative Adversarial Networks

Amaires@June 2024

Generative Adversarial Networks (GAN) are an approach to generative artificial intelligence. It is the first known model to produce
new photorealistic images automatically.

1 Original GAN

With data samples & that follow a certain unknown distribution p(x), the idea is to have a neural network generator Gy, parameterized by
6, which transforms samples z ~ N (0, I) to & that follows p(z). Figure 1 depicts the architecture. In order to train Gy, some optimization
objective is needed to give Gy feedback about whether Z really looks like it is drawn from p(z). A binary descriminator/classifier D, that
returns the probability that & follows p(x) would serve the purpose. Figure 2 shows the architecture we have so far. The introduction of
Dy merely defers the responsibility of guiding Go. How do we train Dy? We could feed it both real samples (z,y) = (&,1) and artificial
samples (x,y) = (Z,0) created by Gy. Figure 3 shows the complete GAN architecture.
The loss function .Z of Dy is the common binary cross entropy function, shown below (see amaires.github.io/OptimizationObjective/

for a refresher):

Remove the negation in (1) and rewrite it in conditional expectation form:

Z = max Eyp)Exmp(a)y) (ylog Dg(x) + (1 — y)log(l — Dy (x))

= max[Pr(y = 1) Bump(oly1) 108 Do(@) + Pr(y = 0) B pioly=o) log(1 = Di(z)]

If the same number of real samples @ and artificial samples Z are fed to Dy in each batch/mini-batch, Pr(y = 1) = Pr(y = 0) = 1. Also
note that z ~ p(z|y = 1) is the same as & ~ p(&) and = ~ p(x|y = 0) is the same as & ~ py(Z|z), £ can be further written:

1 . 1 ~
Z = mgx[iE:th(i)) log Dy (&) + §E§:~pe(i) log(1 — Dy ()]

1 . 1 -
L= m§X[§E¢~p(¢)) log Dy (&) + 3B 0.0 Bz a12) log(1 — Dy(Z))]

After removing the constant %, if for every sample z, only one sample is drawn for Z, which is what Gydoes, £ becomes

Z = mgx[Ew'Np(z')) log Dy (%) + E.n(0,1)log(1 — Dy(Go(2))]

Note that the objective is parameterized by both # and ¢, but it is maximized only in terms of ¢, the paramters for the discriminator. It
is also worth noting that D, gives the probability if a sample follows p(z), but not p(z) itself. Also, Gy generates a sample Z, not py(Z).

The process so far optimizes ¢ to make Dy better at telling real samples apart from samples created by a fixed Gy. For each batc/mini-
batch of samples, ¢ takes a gradient ascent step. This process does not seem to improve Gy whatsoever. If 6 also takes a gradient ascent
step using V¢.Z, it also makes Dy better. In this case, it is probably equivalent to making samples created by Gy more obviously fake, the
opposite of what we want. The solution to this last piece of the GAN puzzle is to update 6 with a gradient descent step. More formally,
our objective function is

L = Hbin mq{;iX[Ein(z-)) log D¢(.Z‘) + EZ~N(O,I) log(l — D¢(G9(Z))]

Intuitively, Dy tries to tell real samples apart from artificial samples, and Gy tries to create artificial samples that are hard to distinguish
from real samples, hence the name generative adversarial network.

In GAN, p(x) and py are never explicitly modeled. Gy can produce good samples following pe(z), but it does not know the form of
po(z). In other words, Gy defines a sampling process without knowing its distribution.

Figure 1: Generator Gy

Discriminator
z I T —> Dy — Pr(True)

Figure 2: Generator Gy and Discriminator Dy

— Pr(True)

Discriminator
z I T —> Dy — Pr(True)

Figure 3: The Complete GAN Architecture

1.1 Jenson-Shannon Divergence
For a given Gy, Dy’s objective is to maximize
Loy = Eyrop(zylog Dy (x) + Epop,(2)(1 —log Dy (x))

= /Lp(a:) log Dy(x) + po(x)log(1 — Dy ())]dz (2)

Let lg,4(x) be the function under the integral in (2). Assuming Dy is flexible and powerful enough, when Ly 4 is maximized with parameter
@*, lg 4+ () is also maximized everywhere. Take Iy »(z)’s derivative against Dy(x), we have

dly.¢(z) _ p(x) po(x)

Dy(w) ~ Dy(e) 1-Dy(a)
Set the expression to 0, you derive Dy« (z):
Dy () = — 2 3)
Substitute Dy (z) with (3) in (2), we have:
Lo = Loy
— [bta) 08 D () + pala)log(1 — Dy (o))

_/[p() g%(P(:ﬂ)+p9(l’)))] g%(p(x)+p9($))]

= X) 10 L X Z) 10 pg—(:r) T — 10 T T — 10 X X
= [V8 T0) + po@) + [V8 T0) + po(@) 052 [pta)d ~1og2 [py(a)a
)

= DL[p(z), p(z) + po() —;pa(ﬂv)] + DL[py(x), p(z) + po() —;pa(a?)] —log4

The first two terms is actually twice the Jenson-Shannon Divergence (JSD) defined as:

P11+ P2
2

D1 +p2)]

1
JS(p17p2):§[DL(P17 9

) + DL(pQ,

Using JSD, Ly is further simplified as:
Ly = 2JS(p(),pe(x)) — log4

Now it becomes clear that the generator Gy is really optimizing the J-S divergence between pg(z) and p(z) given the optimal D,.
The Jenson-Shannon Divergence has a few properties as well.

e JSD(p,q) >0
e JSD(p,q) > 0iff p=g¢
e Unlike the K-L divergence, JSD(p, q) is symmetric. That is JSD(p,q) = JSD(q,p).

1.2 Contrast Maximization

When D, is trained reasonably well, which means Dy (z) is close to 1 for real samples, and is close to 0 for artifical samples, Lg gcan be
shown to maximize the contrast of Dg(x) between real and artifical samples, as shown below.

L9’¢ = EZNP(I) log D¢(.’L‘) + EmNPe(I) (1 — log D¢($))
= E$NP($)(D¢($) -1+ Eypo(z) — Dy () (4)
= Epr(m)Dqﬁ(x) - EINPG(%)D¢(:C) -1

(4) uses the first derivative of log(-) at log(1) for approximation. Of course, when Dy is not a very good discriminator yet, the above does
not hold.

2 f{-GAN

too much math and too little practical impact to write about... will pick up later

3 WGAN
3.1 Problems with GAN

GAN is known to generate very impressive photorealistic images, but it also has a few well documented drawbacks.

The first is a problem known as mode collapse. The discriminator D, only cares about distinguishing real samples from artificial
samples. It does not care about whether those artificial samples have broad coverage or not. For example, suppose the real samples include
images of different animals such as cats, dogs, and horses. Gy is happy to generate pictures of only dogs as long as these pictures become
more real each time 6 is updated. Dy is also perfectly happy with Gg’s behavior as long as each time ¢ is updated, Dy can tell real animal
pictures from these artifical dog picutres a little better.

The second notorious problem with GAN is its difficulty to train. Unlike other deep learning problems which see their loss function
decreases gradually until converging to 0 in training, GAN’s minimax objective does not offer any such guarantee. In practice, GAN’s
objective keeps oscillating during training. Deciding when to stop training is often a manual process. Another reason that prevents GAN’s
effective training has to do with Dy’s final activation function, typically sigmoid. When real samples and artificial samples are far apart,
it is easy for Dy to distinguish them. In this case, sigmoid’s outputs are very close to 1 for real samples, and 0 for artificial samples. Its
derivative is very close to 0, a problem known as vanishing gradient. These 0 gradients cannot provide effective back-propagation for Gy
to improve its sample generating process.

3.2 Intuition of WGAN

The inspiration of Wasserstein GAN (WGAN) comes from contrast maximization described in Section 1.2 and sigmoid’s vanishing gradient
problem described in Section 3.1. WGAN’s objective is

it max Lo, = min max(By) Do (2) = By,) Do (@)

Basically, Dy tries to maximize its output for real samples and minimize its output for artificial samples. G on the other hand tries to
generate artifical samples that also get large outputs.

This objective looks just like the contrast maximization loss in Section (1.2), but there are two main differences: it is no longer an
approximation in a narrow range and sigmoid is not used to compress Dy’s output to between 0 and 1. Completely removing Dy’s output
value constraint may, however, pose another problem; Lg 4 may grow very rapidly out of bound and may still take the form of a sigmoid
function and stifle back-propagation. Ideally, we’d like Dy to behave roughly like a linear function of x. Given deep neural networks are
differentiable for almost all input, we could force the norm of Dy’s gradient to be close to 1 everywhere:

IVaDg ()] ~ 1
This constraint can be added to Ly 4 as a penalty term:
(Vo Dg ()] - 1)?

This penalty term needs to be numerically computable. Averaging over all possible value of z is out of the question, but one possbility is
to average it over both the real samples and the artificial samples, as shown below:

L9,¢ = Em~p(r)D¢(x) - EmNpe(ﬂ?)D¢(x) -)‘Eer(z)(”VfrDﬁb(m)H - 1)2 -)‘EINpg(z)(”V:qut(m)H - 1)2

where A is the knob adjusting the relative importance between maximizing contrast and making Dy roughly a linear function.

A variant of the above formulation creates samples by randomly and linearly interpolating between real and artificial samples, and
averages the penalty term over these samples instead. The final objective function, expressed in numerical computation form, is the
following:

1 . 1 . A . ~
Loy = N ZDM%) N ZDd)(sz’) N ([IVaDyleid; + (1 — &) || — 1)2

where ¢; ~ U(0,1). GAN with this gradient norm penalty is called Wasserstein Generative Adversarial Network - Gradient Penalty
(WGAN-GP).

Both Dy and Gy affects the penalty term. Though it is not mentioned in the original WGAN-GP paper, I don’t think it is desirable to
add the penalty term to Gy’s loss function. WGAN-GP’s objective should instead be

x| ZD¢ (i —fZqu & S IaDslest + (1= el - 17
mln ZD¢ Z;) ZD¢ (Z;)

There are a couple more things worth noting.

e V.Dy(z) is the derivative against z, not against ¢. What is used in back-propagation to update ¢ includes (||V,Dy(z)|| — 1)*s
derivative against ¢.

o Obviously, with WGAN, Gy no longer minimizes the Jenson-Shannon divergence even given an optimal Dg-.

3.3 Math of WGAN

3.3.1 Infimum and supremum

Most people are familiar with the concept of maximum and minimum. Explicitly, if X is a (partially) ordered set and S a subset, then 5
is the maximum of S iff § € S and s < § for all s € S. Similarly, s is the minimum of S iff s € S and s > s for all s € S.

The supremum (sup) of S can be defined like this. Let T'= {t € X|s < tVs € S}, which defines the set of elements greater than all
members of S. If T is empty, S’s supremum does not exist, otherwise it is the mininum of 7. If S has a maximum, it must be the same as
S’s supremum. Even if S does not have a maximum, it may still have a supremum. Below are three examples comparing maximum and
supremum.

1. S ={z]r <2}: S’s maximum is 2, and its supremum is 2 as well.
2. S = {z|x < 2}: S does not have a maximum, but its supremum is 2.
3. S = {z|x > 2}: S has neither a maximum nor a supremum.

Similar comparisons can be made between minimum and infimum. Informally, if one uses supremum and maximum interexchangeably,
little is lost. The same goes for infimum and minimum.

3.3.2 Wasserstein Distance

K-L divergence and J-S divergence are often used to measure the closeness between two distributions. In fact, VAE (amaires.github.io/
VAE) uses K-L divergence for optimization and GAN’s Gy minimizes the J-S divergence given an optimal Dy-. Unfortunately, these two
measures have discontinuity when two distributions have disjoint supports (the support of a function is the subset of the function domain
not mapped to 0). For example, given two distributions defined below:

1 = 1 =46
= d =
p(x) { and pg(z) {0 v 46
It is not hard to figure out their K-L and J-S divergence:
0=0
0+#0

Ideally, we’d like a measure that is smoother. Wasserstein distance is exactly such a function defined as:

0 6=0

0
KL =
(P. o) {oo log2 0+#0

and ‘]S(pvpg) = {

WS(p1, = inf Eg e ||z —
(p1,p2) T (prp2) (z,y)~y l 3/||1
where [[(p1,p2) contains all joint distribution of (z,y) such that p;(z) = [v(x,y)dy and p2(y) = [v(x,y)dz. Wasserstein distance is also

called earth-mover distance. It informally captures the minimal amount of mass/dirt needs to be moved to turn the shape of p; into that
of po. Using this definition, the Wasserstain distance between p(z) and pg(z) above can be calculated to be |6], which is a continuous
function of 6.

In general, however, Wasserstein distance is intractable to calculate. Fortunately, Wasserstein distance has another definition, based on
the Kantorovich-Rubinstein duality, which is easier to handle:

WS(p1,p2) = sup Eyrp, f(2) = Egnp, f () ()

A<t

where f(-) is any real valued function. ||f||, <1 means f’s Lipschitz constant is 1. Technically, it means

[f(@) = fy)l < lle—yll, Yo,y

Intuitively, it is equivalent to saying f(z)’s value should not change too much as x changes.
Wasserstein distance (5) really captures the contrast maximization idea in Section 1.2 well. The Lipschitz continuity constraint can be
approximated by the gradient penalty term introduced in 3.2.

T - E, — 7 —» — Pr(True)
Discriminator

De
Z = > T —> — Pr(True)

Figure 4: BiGAN architecture

3.3.3 GAN and WGAN

GAN’s Dy optimizes maximum likelihood of observing samples & and Z. Given an optional Dy, G minimizes the J-S divergence between
po(w) and p(2).

In WGAN, D, maximizes the Wasserstein distance between ¢ and & while Gy tries to reduce it. Wasserstein distance is a smoother
and more effective measure of closeness between two distributions, resulting in more stable training and less mode collapse in WGAN than
GAN.

4 Latent Representation and BiGAN

The training of Variational Autoencoders produces both a generator and a encoder. The latter is capable of extracting features or latent
representations of data. GAN only has a generator Gy. It is conceivable that the pre-final layers of the discriminator Dg may be used for
feature representations. The intuition is that Dy would have learned useful high-level representations of both real and artificial samples.

Bidirectional Generative Adversarial Networks (BiGAN), depicted in Figure 4, takes a much more direct approach to latent represen-
tation. It introduces an encoder E. that maps real samples & to Z in the latent space. D, works on the joint distribution of (z,z) and
tries to maximize the contrast between real samples (z, Z) and artificial samples (Z, z). The loss function introduced in WGAN-GP can be
used here. After training is done, new samples can be generated by Gy, and latent representations can be inferred via E..

5 Image-to-image translation and CycleGAN

A GAN’s generator maps samples drawn from N(0,I) to meaningful images. Can GAN map images in one domain to ones in another
domain, for example from summer pictures to winter pictures of the same place, from horse pictures to zebra pictures, and from photos to
Van Gogh’s paintings?

It is not hard to design a GAN for that purpose. For example, suppose our goal is to add black/white stripes to a horse and make it
look like a zebra, we could replace z ~ N(0,I) with a bunch of horse pictures, and the real samples will be drawn from zebra pictures.
Unfortunately, this architecture does not ensure that the generated zebra picture will be much like the input horse picture. CycleGAN
introduced two innovations to address this problem:

1. Create two GANs. The first GAN translates horse pictures to zebra pictures, and the second GAN translates zebra pictures to horse
pictures.

2. Each generated zebra picture is then fed to the second GAN to translate to a horse picture. This generated horse picture should look
similar to the original horse picture. A similar process happens with the reverse translation direction.

For simplicity, we’ll use the following notation.

Notation \ Meaning
T real samples from domain X
y real samples from domain Y
D, descriminator for samples in X
D, descriminator for samples in Y
Gy generator that maps samples in X to samples in Y
Gya generator that maps samples in Y to samples in X
Loan(X,Y,Gyy, Dy) GAN’s loss function that involves Gy and D,
Loan(Y, X,Gyz, Dy) GAN’s loss function that involves G, and D,

CycleGAN’s optimization objective is

LGAN(Xa Y, Gay, Dy) + Lean(Y, X, Gyas Dw) + AE, HGUI(GI’U(x)) - x||1 + AEy ||qu(Gw(y)) - y||1

