
Generative Adversarial Networks

Amaires@June 2024

Generative Adversarial Networks (GAN) are an approach to generative artificial intelligence. It is the first known model to produce
new photorealistic images automatically.

1 Original GAN
With data samples ẋ that follow a certain unknown distribution p(x), the idea is to have a neural network generator Gθ, parameterized by
θ, which transforms samples z ∼ N(0, I) to x̃ that follows p(x). Figure 1 depicts the architecture. In order to train Gθ, some optimization
objective is needed to give Gθ feedback about whether x̃ really looks like it is drawn from p(x). A binary descriminator/classifier Dφ that
returns the probability that x̃ follows p(x) would serve the purpose. Figure 2 shows the architecture we have so far. The introduction of
Dφ merely defers the responsibility of guiding Gθ. How do we train Dφ? We could feed it both real samples (x, y) = (ẋ, 1) and artificial
samples (x, y) = (x̃, 0) created by Gθ. Figure 3 shows the complete GAN architecture.

The loss function L ofDφ is the common binary cross entropy function, shown below (see amaires.github.io/OptimizationObjective/
for a refresher):

L = min
θ
−Ex,y∼p(x,y)(y logDφ(x) + (1− y) log(1−Dφ(x)) (1)

Remove the negation in (1) and rewrite it in conditional expectation form:

L = max
φ

Ey∼p(y)Ex∼p(x|y)(y logDφ(x) + (1− y) log(1−Dφ(x))

= max
φ

[Pr(y = 1)Ex∼p(x|y=1) logDφ(x) + Pr(y = 0)Ex∼p(x|y=0) log(1−Dφ(x)]

If the same number of real samples ẋ and artificial samples x̃ are fed to Dφ in each batch/mini-batch, Pr(y = 1) = Pr(y = 0) = 1
2 . Also

note that x ∼ p(x|y = 1) is the same as ẋ ∼ p(ẋ) and x ∼ p(x|y = 0) is the same as x̃ ∼ pθ(x̃|z), L can be further written:

L = max
φ

[
1

2
Eẋ∼p(ẋ)) logDφ(ẋ) +

1

2
Ex̃∼pθ(x̃) log(1−Dφ(x̃)]

L = max
φ

[
1

2
Eẋ∼p(ẋ)) logDφ(ẋ) +

1

2
Ez∼N(0,I)Ex̃∼pθ(x̃|z) log(1−Dφ(x̃))]

After removing the constant 1
2 , if for every sample z, only one sample is drawn for x̃, which is what Gθdoes, L becomes

L = max
φ

[Eẋ∼p(ẋ)) logDφ(ẋ) + Ez∼N(0,I) log(1−Dφ(Gθ(z))]

Note that the objective is parameterized by both θ and φ, but it is maximized only in terms of φ, the paramters for the discriminator. It
is also worth noting that Dφ gives the probability if a sample follows p(x), but not p(x) itself. Also, Gθ generates a sample x̃, not pθ(x̃).

The process so far optimizes φ to make Dφ better at telling real samples apart from samples created by a fixed Gθ. For each batc/mini-
batch of samples, φ takes a gradient ascent step. This process does not seem to improve Gθ whatsoever. If θ also takes a gradient ascent
step using ∇θL , it also makes Dφ better. In this case, it is probably equivalent to making samples created by Gθ more obviously fake, the
opposite of what we want. The solution to this last piece of the GAN puzzle is to update θ with a gradient descent step. More formally,
our objective function is

L = min
θ

max
φ

[Eẋ∼p(ẋ)) logDφ(ẋ) + Ez∼N(0,I) log(1−Dφ(Gθ(z))]

Intuitively, Dθ tries to tell real samples apart from artificial samples, and Gθ tries to create artificial samples that are hard to distinguish
from real samples, hence the name generative adversarial network.

In GAN, p(x) and pθ are never explicitly modeled. Gθ can produce good samples following pθ(x), but it does not know the form of
pθ(x). In other words, Gθ defines a sampling process without knowing its distribution.

Generator
Gθ

z x̃

Figure 1: Generator Gθ

1

Generator
Gθ

z x̃

Discriminator
Dφ Pr(True)

Figure 2: Generator Gθ and Discriminator Dφ

Generator
Gθ

z x̃

Discriminator
Dφ Pr(True)

ẋ Pr(True)

Figure 3: The Complete GAN Architecture

1.1 Jenson-Shannon Divergence
For a given Gθ, Dφ’s objective is to maximize

Lθ,φ = Ex∼p(x) logDφ(x) + Ex∼pθ(x)(1− logDφ(x))

=

∫
[p(x) logDφ(x) + pθ(x) log(1−Dφ(x))]dx (2)

Let lθ,φ(x) be the function under the integral in (2). Assuming Dφ is flexible and powerful enough, when Lθ,φ is maximized with parameter
φ∗, lθ,φ∗(x) is also maximized everywhere. Take lθ,φ(x)’s derivative against Dφ(x), we have

dlθ,φ(x)

dDφ(x)
=

p(x)

Dφ(x)
− pθ(x)

1−Dφ(x)

Set the expression to 0, you derive Dφ∗(x):

Dφ∗(x) =
p(x)

p(x) + pθ(x)
(3)

Substitute Dφ(x) with (3) in (2), we have:

Lθ = Lθ,φ∗

=

∫
[p(x) logDφ∗(x) + pθ(x) log(1−Dφ∗(x))]dx

=

∫
[p(x) log

p(x)

p(x) + pθ(x)
+ pθ(x) log

pθ(x)

p(x) + pθ(x)
]dx

=

∫
[p(x) log

1
2p(x)

1
2 (p(x) + pθ(x))

+ pθ(x) log
1
2pθ(x)

1
2 (p(x) + pθ(x))

]dx

=

∫
p(x) log

p(x)
1
2 (p(x) + pθ(x))

dx+

∫
pθ(x) log

pθ(x)
1
2 (p(x) + pθ(x))

dx− log 2

∫
p(x)dx− log 2

∫
pθ(x)dx

= DL[p(x),
p(x) + pθ(x)

2
] +DL[pθ(x),

p(x) + pθ(x)

2
]− log 4

The first two terms is actually twice the Jenson-Shannon Divergence (JSD) defined as:

JS(p1, p2) =
1

2
[DL(p1,

p1 + p2
2

) +DL(p2,
p1 + p2

2
)]

Using JSD, Lθ is further simplified as:
Lθ = 2JS(p(x), pθ(x))− log 4

Now it becomes clear that the generator Gθ is really optimizing the J-S divergence between pθ(x) and p(x) given the optimal Dφ∗.
The Jenson-Shannon Divergence has a few properties as well.

• JSD(p, q) ≥ 0

• JSD(p, q) ≥ 0 iff p = q

• Unlike the K-L divergence, JSD(p, q) is symmetric. That is JSD(p, q) = JSD(q, p).

2

1.2 Contrast Maximization
When Dφ is trained reasonably well, which means Dφ(x) is close to 1 for real samples, and is close to 0 for artifical samples, Lθ,φcan be
shown to maximize the contrast of Dφ(x) between real and artifical samples, as shown below.

Lθ,φ = Ex∼p(x) logDφ(x) + Ex∼pθ(x)(1− logDφ(x))

' Ex∼p(x)(Dφ(x)− 1) + Ex∼pθ(x) −Dφ(x) (4)
= Ex∼p(x)Dφ(x)− Ex∼pθ(x)Dφ(x)− 1

(4) uses the first derivative of log(·) at log(1) for approximation. Of course, when Dθ is not a very good discriminator yet, the above does
not hold.

2 f-GAN
too much math and too little practical impact to write about... will pick up later

3 WGAN

3.1 Problems with GAN
GAN is known to generate very impressive photorealistic images, but it also has a few well documented drawbacks.

The first is a problem known as mode collapse. The discriminator Dφ only cares about distinguishing real samples from artificial
samples. It does not care about whether those artificial samples have broad coverage or not. For example, suppose the real samples include
images of different animals such as cats, dogs, and horses. Gθ is happy to generate pictures of only dogs as long as these pictures become
more real each time θ is updated. Dφ is also perfectly happy with Gθ’s behavior as long as each time φ is updated, Dφ can tell real animal
pictures from these artifical dog picutres a little better.

The second notorious problem with GAN is its difficulty to train. Unlike other deep learning problems which see their loss function
decreases gradually until converging to 0 in training, GAN’s minimax objective does not offer any such guarantee. In practice, GAN’s
objective keeps oscillating during training. Deciding when to stop training is often a manual process. Another reason that prevents GAN’s
effective training has to do with Dφ’s final activation function, typically sigmoid. When real samples and artificial samples are far apart,
it is easy for Dφ to distinguish them. In this case, sigmoid’s outputs are very close to 1 for real samples, and 0 for artificial samples. Its
derivative is very close to 0, a problem known as vanishing gradient. These 0 gradients cannot provide effective back-propagation for Gθ
to improve its sample generating process.

3.2 Intuition of WGAN
The inspiration of Wasserstein GAN (WGAN) comes from contrast maximization described in Section 1.2 and sigmoid’s vanishing gradient
problem described in Section 3.1. WGAN’s objective is

min
θ

max
φ

Lθ,φ = min
θ

max
φ

[Ex∼p(x)Dφ(x)− Ex∼pθ(x)Dφ(x)]

Basically, Dφ tries to maximize its output for real samples and minimize its output for artificial samples. Gθ on the other hand tries to
generate artifical samples that also get large outputs.

This objective looks just like the contrast maximization loss in Section (1.2), but there are two main differences: it is no longer an
approximation in a narrow range and sigmoid is not used to compress Dφ’s output to between 0 and 1. Completely removing Dφ’s output
value constraint may, however, pose another problem; Lθ,φ may grow very rapidly out of bound and may still take the form of a sigmoid
function and stifle back-propagation. Ideally, we’d like Dφ to behave roughly like a linear function of x. Given deep neural networks are
differentiable for almost all input, we could force the norm of Dφ’s gradient to be close to 1 everywhere:

‖∇xDφ(x)‖ ' 1

This constraint can be added to Lθ,φ as a penalty term:

(‖∇xDφ(x)‖ − 1)2

This penalty term needs to be numerically computable. Averaging over all possible value of x is out of the question, but one possbility is
to average it over both the real samples and the artificial samples, as shown below:

Lθ,φ = Ex∼p(x)Dφ(x)− Ex∼pθ(x)Dφ(x)− λEx∼p(x)(‖∇xDφ(x)‖ − 1)2 − λEx∼pθ(x)(‖∇xDφ(x)‖ − 1)2

where λ is the knob adjusting the relative importance between maximizing contrast and making Dφ roughly a linear function.
A variant of the above formulation creates samples by randomly and linearly interpolating between real and artificial samples, and

averages the penalty term over these samples instead. The final objective function, expressed in numerical computation form, is the
following:

Lθ,φ =
1

N

∑
i

Dφ(ẋi)−
1

N

∑
i

Dφ(x̃i)−
λ

N

∑
i

(‖∇xDφ[εiẋi + (1− εix̃i)]‖ − 1)2

3

where εi ∼ U(0, 1). GAN with this gradient norm penalty is called Wasserstein Generative Adversarial Network - Gradient Penalty
(WGAN-GP).

Both Dφ and Gθ affects the penalty term. Though it is not mentioned in the original WGAN-GP paper, I don’t think it is desirable to
add the penalty term to Gθ’s loss function. WGAN-GP’s objective should instead be

max
φ

[
1

N

∑
i

Dφ(ẋi)−
1

N

∑
i

Dφ(x̃i)−
λ

N

∑
i

(‖∇xDφ[εiẋi + (1− εi)x̃i]‖ − 1)2]

min
θ

[
1

N

∑
i

Dφ(ẋi)−
1

N

∑
i

Dφ(x̃i)]

There are a couple more things worth noting.

• ∇xDφ(x) is the derivative against x, not against φ. What is used in back-propagation to update φ includes (‖∇xDφ(x)‖ − 1)2’s
derivative against φ.

• Obviously, with WGAN, Gθ no longer minimizes the Jenson-Shannon divergence even given an optimal Dφ∗ .

3.3 Math of WGAN
3.3.1 Infimum and supremum

Most people are familiar with the concept of maximum and minimum. Explicitly, if X is a (partially) ordered set and S a subset, then s̄
is the maximum of S iff s̄ ∈ S and s ≤ s̄ for all s ∈ S. Similarly, s is the minimum of S iff s ∈ S and s ≥ s for all s ∈ S.

The supremum (sup) of S can be defined like this. Let T = {t ∈ X|s ≤ t∀s ∈ S}, which defines the set of elements greater than all
members of S. If T is empty, S’s supremum does not exist, otherwise it is the mininum of T . If S has a maximum, it must be the same as
S’s supremum. Even if S does not have a maximum, it may still have a supremum. Below are three examples comparing maximum and
supremum.

1. S = {x|x ≤ 2}: S’s maximum is 2, and its supremum is 2 as well.

2. S = {x|x < 2}: S does not have a maximum, but its supremum is 2.

3. S = {x|x > 2}: S has neither a maximum nor a supremum.

Similar comparisons can be made between minimum and infimum. Informally, if one uses supremum and maximum interexchangeably,
little is lost. The same goes for infimum and minimum.

3.3.2 Wasserstein Distance

K-L divergence and J-S divergence are often used to measure the closeness between two distributions. In fact, VAE (amaires.github.io/
VAE) uses K-L divergence for optimization and GAN’s Gθ minimizes the J-S divergence given an optimal Dφ∗ . Unfortunately, these two
measures have discontinuity when two distributions have disjoint supports (the support of a function is the subset of the function domain
not mapped to 0). For example, given two distributions defined below:

p(x) =

{
1 x = 0

0 x 6= 0
and pθ(x) =

{
1 x = θ

0 x 6= θ

It is not hard to figure out their K-L and J-S divergence:

KL(p, pθ) =

{
0 θ = 0

∞ θ 6= 0
and JS(p, pθ) =

{
0 θ = 0

log 2 θ 6= 0

Ideally, we’d like a measure that is smoother. Wasserstein distance is exactly such a function defined as:

WS(p1, p2) = inf
γ∈

∏
(p1,p2)

E(x,y)∼γ ‖x− y‖1

where
∏

(p1, p2) contains all joint distribution of (x, y) such that p1(x) =
∫
γ(x, y)dy and p2(y) =

∫
γ(x, y)dx. Wasserstein distance is also

called earth-mover distance. It informally captures the minimal amount of mass/dirt needs to be moved to turn the shape of p1 into that
of p2. Using this definition, the Wasserstain distance between p(x) and pθ(x) above can be calculated to be |θ|, which is a continuous
function of θ.

In general, however, Wasserstein distance is intractable to calculate. Fortunately, Wasserstein distance has another definition, based on
the Kantorovich-Rubinstein duality, which is easier to handle:

WS(p1, p2) = sup
‖f‖L≤1

Ex∼p1f(x)− Ex∼p2f(x) (5)

where f(·) is any real valued function. ‖f‖L ≤ 1 means f ’s Lipschitz constant is 1. Technically, it means

|f(x)− f(y)| ≤ ‖x− y‖1 ∀x, y

Intuitively, it is equivalent to saying f(x)’s value should not change too much as x changes.
Wasserstein distance (5) really captures the contrast maximization idea in Section 1.2 well. The Lipschitz continuity constraint can be

approximated by the gradient penalty term introduced in 3.2.

4

Generator
Gθ

Encoder
Eγ

z x̃

Discriminator
Dφ

Pr(True)

ẋ z̃ Pr(True)

Figure 4: BiGAN architecture

3.3.3 GAN and WGAN

GAN’s Dφ optimizes maximum likelihood of observing samples ẋ and x̃. Given an optional Dφ∗ , Gθ minimizes the J-S divergence between
pθ(x) and p(x).

In WGAN, Dφ maximizes the Wasserstein distance between ẋ and x̃ while Gθ tries to reduce it. Wasserstein distance is a smoother
and more effective measure of closeness between two distributions, resulting in more stable training and less mode collapse in WGAN than
GAN.

4 Latent Representation and BiGAN
The training of Variational Autoencoders produces both a generator and a encoder. The latter is capable of extracting features or latent
representations of data. GAN only has a generator Gθ. It is conceivable that the pre-final layers of the discriminator Dφ may be used for
feature representations. The intuition is that Dφ would have learned useful high-level representations of both real and artificial samples.

Bidirectional Generative Adversarial Networks (BiGAN), depicted in Figure 4, takes a much more direct approach to latent represen-
tation. It introduces an encoder Eγ that maps real samples ẋ to z̃ in the latent space. Dφ works on the joint distribution of (x, z) and
tries to maximize the contrast between real samples (ẋ, z̃) and artificial samples (x̃, z). The loss function introduced in WGAN-GP can be
used here. After training is done, new samples can be generated by Gθ, and latent representations can be inferred via Eγ .

5 Image-to-image translation and CycleGAN
A GAN’s generator maps samples drawn from N(0, I) to meaningful images. Can GAN map images in one domain to ones in another
domain, for example from summer pictures to winter pictures of the same place, from horse pictures to zebra pictures, and from photos to
Van Gogh’s paintings?

It is not hard to design a GAN for that purpose. For example, suppose our goal is to add black/white stripes to a horse and make it
look like a zebra, we could replace z ∼ N(0, I) with a bunch of horse pictures, and the real samples will be drawn from zebra pictures.
Unfortunately, this architecture does not ensure that the generated zebra picture will be much like the input horse picture. CycleGAN
introduced two innovations to address this problem:

1. Create two GANs. The first GAN translates horse pictures to zebra pictures, and the second GAN translates zebra pictures to horse
pictures.

2. Each generated zebra picture is then fed to the second GAN to translate to a horse picture. This generated horse picture should look
similar to the original horse picture. A similar process happens with the reverse translation direction.

For simplicity, we’ll use the following notation.

Notation Meaning
x real samples from domain X
y real samples from domain Y
Dx descriminator for samples in X
Dy descriminator for samples in Y
Gxy generator that maps samples in X to samples in Y
Gyx generator that maps samples in Y to samples in X

LGAN (X,Y,Gxy, Dy) GAN’s loss function that involves Gxy and Dy

LGAN (Y,X,Gyx, Dx) GAN’s loss function that involves Gyx and Dx

CycleGAN’s optimization objective is

LGAN (X,Y,Gxy, Dy) + LGAN (Y,X,Gyx, Dx) + λEx ‖Gyx(Gxy(x))− x‖1 + λEy ‖Gxy(Gyx(y))− y‖1

5

