

Generative Adversarial Networks

Amaires@June 2024

Generative Adversarial Networks (GAN) are an approach to generative artificial intelligence. It is the first known model to produce new photorealistic images automatically.

1 Original GAN

With data samples \dot{x} that follow a certain unknown distribution $p(x)$, the idea is to have a neural network generator G_θ , parameterized by θ , which transforms samples $z \sim N(0, I)$ to \tilde{x} that follows $p(x)$. Figure 1 depicts the architecture. In order to train G_θ , some optimization objective is needed to give G_θ feedback about whether \tilde{x} really looks like it is drawn from $p(x)$. A binary discriminator/classifier D_ϕ that returns the probability that \tilde{x} follows $p(x)$ would serve the purpose. Figure 2 shows the architecture we have so far. The introduction of D_ϕ merely defers the responsibility of guiding G_θ . How do we train D_ϕ ? We could feed it both real samples $(x, y) = (\dot{x}, 1)$ and artificial samples $(x, y) = (\tilde{x}, 0)$ created by G_θ . Figure 3 shows the complete GAN architecture.

The loss function \mathcal{L} of D_ϕ is the common binary cross entropy function, shown below (see amaires.github.io/OptimizationObjective/ for a refresher):

$$\mathcal{L} = \min_{\theta} -E_{x,y \sim p(x,y)}(y \log D_\phi(x) + (1-y) \log(1 - D_\phi(x))) \quad (1)$$

Remove the negation in (1) and rewrite it in conditional expectation form:

$$\begin{aligned} \mathcal{L} &= \max_{\phi} E_{y \sim p(y)} E_{x \sim p(x|y)}(y \log D_\phi(x) + (1-y) \log(1 - D_\phi(x))) \\ &= \max_{\phi} [\Pr(y=1) E_{x \sim p(x|y=1)} \log D_\phi(x) + \Pr(y=0) E_{x \sim p(x|y=0)} \log(1 - D_\phi(x))] \end{aligned}$$

If the same number of real samples \dot{x} and artificial samples \tilde{x} are fed to D_ϕ in each batch/mini-batch, $\Pr(y=1) = \Pr(y=0) = \frac{1}{2}$. Also note that $x \sim p(x|y=1)$ is the same as $\dot{x} \sim p(\dot{x})$ and $x \sim p(x|y=0)$ is the same as $\tilde{x} \sim p_\theta(\tilde{x}|z)$, \mathcal{L} can be further written:

$$\begin{aligned} \mathcal{L} &= \max_{\phi} [\frac{1}{2} E_{\dot{x} \sim p(\dot{x})} \log D_\phi(\dot{x}) + \frac{1}{2} E_{\tilde{x} \sim p_\theta(\tilde{x})} \log(1 - D_\phi(\tilde{x}))] \\ L &= \max_{\phi} [\frac{1}{2} E_{\dot{x} \sim p(\dot{x})} \log D_\phi(\dot{x}) + \frac{1}{2} E_{z \sim N(0,I)} E_{\tilde{x} \sim p_\theta(\tilde{x}|z)} \log(1 - D_\phi(\tilde{x}))] \end{aligned}$$

After removing the constant $\frac{1}{2}$, if for every sample z , only one sample is drawn for \tilde{x} , which is what G_θ does, \mathcal{L} becomes

$$\mathcal{L} = \max_{\phi} [E_{\dot{x} \sim p(\dot{x})} \log D_\phi(\dot{x}) + E_{z \sim N(0,I)} \log(1 - D_\phi(G_\theta(z)))]$$

Note that the objective is parameterized by both θ and ϕ , but it is maximized only in terms of ϕ , the parameters for the discriminator. It is also worth noting that D_ϕ gives the probability if a sample follows $p(x)$, but not $p(x)$ itself. Also, G_θ generates a sample \tilde{x} , not $p_\theta(\tilde{x})$.

The process so far optimizes ϕ to make D_ϕ better at telling real samples apart from samples created by a fixed G_θ . For each batch/mini-batch of samples, ϕ takes a gradient *ascent* step. This process does not seem to improve G_θ whatsoever. If θ also takes a gradient ascent step using $\nabla_\theta \mathcal{L}$, it also makes D_ϕ better. In this case, it is probably equivalent to making samples created by G_θ more obviously fake, the opposite of what we want. The solution to this last piece of the GAN puzzle is to update θ with a gradient *descent* step. More formally, our objective function is

$$\mathcal{L} = \min_{\theta} \max_{\phi} [E_{\dot{x} \sim p(\dot{x})} \log D_\phi(\dot{x}) + E_{z \sim N(0,I)} \log(1 - D_\phi(G_\theta(z)))]$$

Intuitively, D_θ tries to tell real samples apart from artificial samples, and G_θ tries to create artificial samples that are hard to distinguish from real samples, hence the name generative adversarial network.

In GAN, $p(x)$ and p_θ are never explicitly modeled. G_θ can produce good samples following $p_\theta(x)$, but it does not know the form of $p_\theta(x)$. In other words, G_θ defines a sampling process without knowing its distribution.

Figure 1: Generator G_θ

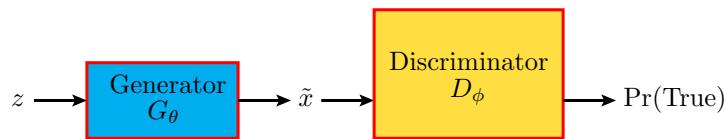


Figure 2: Generator G_θ and Discriminator D_ϕ

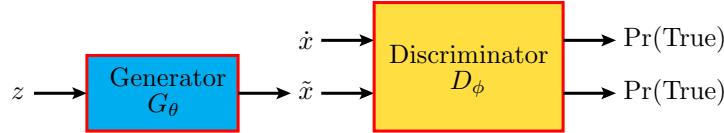


Figure 3: The Complete GAN Architecture

1.1 Jenson-Shannon Divergence

For a given G_θ , D_ϕ 's objective is to maximize

$$\begin{aligned}
L_{\theta, \phi} &= E_{x \sim p(x)} \log D_\phi(x) + E_{x \sim p_\theta(x)} (1 - \log D_\phi(x)) \\
&= \int [p(x) \log D_\phi(x) + p_\theta(x) \log(1 - D_\phi(x))] dx
\end{aligned} \tag{2}$$

Let $l_{\theta, \phi}(x)$ be the function under the integral in (2). Assuming D_ϕ is flexible and powerful enough, when $L_{\theta, \phi}$ is maximized with parameter ϕ^* , $l_{\theta, \phi^*}(x)$ is also maximized everywhere. Take $l_{\theta, \phi}(x)$'s derivative against $D_\phi(x)$, we have

$$\frac{dl_{\theta, \phi}(x)}{dD_\phi(x)} = \frac{p(x)}{D_\phi(x)} - \frac{p_\theta(x)}{1 - D_\phi(x)}$$

Set the expression to 0, you derive $D_{\phi^*}(x)$:

$$D_{\phi^*}(x) = \frac{p(x)}{p(x) + p_\theta(x)} \tag{3}$$

Substitute $D_\phi(x)$ with (3) in (2), we have:

$$\begin{aligned}
L_\theta &= L_{\theta, \phi^*} \\
&= \int [p(x) \log D_{\phi^*}(x) + p_\theta(x) \log(1 - D_{\phi^*}(x))] dx \\
&= \int [p(x) \log \frac{p(x)}{p(x) + p_\theta(x)} + p_\theta(x) \log \frac{p_\theta(x)}{p(x) + p_\theta(x)}] dx \\
&= \int [p(x) \log \frac{\frac{1}{2}p(x)}{\frac{1}{2}(p(x) + p_\theta(x))} + p_\theta(x) \log \frac{\frac{1}{2}p_\theta(x)}{\frac{1}{2}(p(x) + p_\theta(x))}] dx \\
&= \int p(x) \log \frac{p(x)}{\frac{1}{2}(p(x) + p_\theta(x))} dx + \int p_\theta(x) \log \frac{p_\theta(x)}{\frac{1}{2}(p(x) + p_\theta(x))} dx - \log 2 \int p(x) dx - \log 2 \int p_\theta(x) dx \\
&= DL[p(x), \frac{p(x) + p_\theta(x)}{2}] + DL[p_\theta(x), \frac{p(x) + p_\theta(x)}{2}] - \log 4
\end{aligned}$$

The first two terms is actually twice the Jenson-Shannon Divergence (JSD) defined as:

$$JS(p_1, p_2) = \frac{1}{2} [DL(p_1, \frac{p_1 + p_2}{2}) + DL(p_2, \frac{p_1 + p_2}{2})]$$

Using JSD, L_θ is further simplified as:

$$L_\theta = 2JS(p(x), p_\theta(x)) - \log 4$$

Now it becomes clear that the generator G_θ is really optimizing the J-S divergence between $p_\theta(x)$ and $p(x)$ given the optimal D_{ϕ^*} .

The Jenson-Shannon Divergence has a few properties as well.

- $JSD(p, q) \geq 0$
- $JSD(p, q) \geq 0$ iff $p = q$
- Unlike the K-L divergence, $JSD(p, q)$ is symmetric. That is $JSD(p, q) = JSD(q, p)$.

1.2 Contrast Maximization

When D_ϕ is trained reasonably well, which means $D_\phi(x)$ is close to 1 for real samples, and is close to 0 for artificial samples, $L_{\theta,\phi}$ can be shown to maximize the contrast of $D_\phi(x)$ between real and artificial samples, as shown below.

$$\begin{aligned} L_{\theta,\phi} &= E_{x \sim p(x)} \log D_\phi(x) + E_{x \sim p_\theta(x)} (1 - \log D_\phi(x)) \\ &\simeq E_{x \sim p(x)} (D_\phi(x) - 1) + E_{x \sim p_\theta(x)} - D_\phi(x) \\ &= E_{x \sim p(x)} D_\phi(x) - E_{x \sim p_\theta(x)} D_\phi(x) - 1 \end{aligned} \quad (4)$$

(4) uses the first derivative of $\log(\cdot)$ at $\log(1)$ for approximation. Of course, when D_θ is not a very good discriminator yet, the above does not hold.

2 f-GAN

too much math and too little practical impact to write about... will pick up later

3 WGAN

3.1 Problems with GAN

GAN is known to generate very impressive photorealistic images, but it also has a few well documented drawbacks.

The first is a problem known as mode collapse. The discriminator D_ϕ only cares about distinguishing real samples from artificial samples. It does not care about whether those artificial samples have broad coverage or not. For example, suppose the real samples include images of different animals such as cats, dogs, and horses. G_θ is happy to generate pictures of only dogs as long as these pictures become more real each time θ is updated. D_ϕ is also perfectly happy with G_θ 's behavior as long as each time ϕ is updated, D_ϕ can tell real animal pictures from these artificial dog pictures a little better.

The second notorious problem with GAN is its difficulty to train. Unlike other deep learning problems which see their loss function decreases gradually until converging to 0 in training, GAN's minimax objective does not offer any such guarantee. In practice, GAN's objective keeps oscillating during training. Deciding when to stop training is often a manual process. Another reason that prevents GAN's effective training has to do with D_ϕ 's final activation function, typically sigmoid. When real samples and artificial samples are far apart, it is easy for D_ϕ to distinguish them. In this case, sigmoid's outputs are very close to 1 for real samples, and 0 for artificial samples. Its derivative is very close to 0, a problem known as vanishing gradient. These 0 gradients cannot provide effective back-propagation for G_θ to improve its sample generating process.

3.2 Intuition of WGAN

The inspiration of Wasserstein GAN (WGAN) comes from contrast maximization described in Section 1.2 and sigmoid's vanishing gradient problem described in Section 3.1. WGAN's objective is

$$\min_{\theta} \max_{\phi} L_{\theta,\phi} = \min_{\theta} \max_{\phi} [E_{x \sim p(x)} D_\phi(x) - E_{x \sim p_\theta(x)} D_\phi(x)]$$

Basically, D_ϕ tries to maximize its output for real samples and minimize its output for artificial samples. G_θ on the other hand tries to generate artificial samples that also get large outputs.

This objective looks just like the contrast maximization loss in Section (1.2), but there are two main differences: it is no longer an approximation in a narrow range and sigmoid is not used to compress D_ϕ 's output to between 0 and 1. Completely removing D_ϕ 's output value constraint may, however, pose another problem; $L_{\theta,\phi}$ may grow very rapidly out of bound and may still take the form of a sigmoid function and stifle back-propagation. Ideally, we'd like D_ϕ to behave roughly like a linear function of x . Given deep neural networks are differentiable for almost all input, we could force the norm of D_ϕ 's gradient to be close to 1 everywhere:

$$\|\nabla_x D_\phi(x)\| \simeq 1$$

This constraint can be added to $L_{\theta,\phi}$ as a penalty term:

$$(\|\nabla_x D_\phi(x)\| - 1)^2$$

This penalty term needs to be numerically computable. Averaging over all possible value of x is out of the question, but one possibility is to average it over both the real samples and the artificial samples, as shown below:

$$L_{\theta,\phi} = E_{x \sim p(x)} D_\phi(x) - E_{x \sim p_\theta(x)} D_\phi(x) - \lambda E_{x \sim p(x)} (\|\nabla_x D_\phi(x)\| - 1)^2 - \lambda E_{x \sim p_\theta(x)} (\|\nabla_x D_\phi(x)\| - 1)^2$$

where λ is the knob adjusting the relative importance between maximizing contrast and making D_ϕ roughly a linear function.

A variant of the above formulation creates samples by randomly and linearly interpolating between real and artificial samples, and averages the penalty term over these samples instead. The final objective function, expressed in numerical computation form, is the following:

$$L_{\theta,\phi} = \frac{1}{N} \sum_i D_\phi(\dot{x}_i) - \frac{1}{N} \sum_i D_\phi(\tilde{x}_i) - \frac{\lambda}{N} \sum_i (\|\nabla_x D_\phi[\varepsilon_i \dot{x}_i + (1 - \varepsilon_i) \tilde{x}_i]\| - 1)^2$$

where $\varepsilon_i \sim U(0, 1)$. GAN with this gradient norm penalty is called Wasserstein Generative Adversarial Network - Gradient Penalty (WGAN-GP).

Both D_ϕ and G_θ affects the penalty term. Though it is not mentioned in the original WGAN-GP paper, I don't think it is desirable to add the penalty term to G_θ 's loss function. WGAN-GP's objective should instead be

$$\begin{aligned} \max_{\phi} & \left[\frac{1}{N} \sum_i D_\phi(\dot{x}_i) - \frac{1}{N} \sum_i D_\phi(\tilde{x}_i) - \frac{\lambda}{N} \sum_i (\|\nabla_x D_\phi[\varepsilon_i \dot{x}_i + (1 - \varepsilon_i) \tilde{x}_i]\| - 1)^2 \right] \\ \min_{\theta} & \left[\frac{1}{N} \sum_i D_\phi(\dot{x}_i) - \frac{1}{N} \sum_i D_\phi(\tilde{x}_i) \right] \end{aligned}$$

There are a couple more things worth noting.

- $\nabla_x D_\phi(x)$ is the derivative against x , not against ϕ . What is used in back-propagation to update ϕ includes $(\|\nabla_x D_\phi(x)\| - 1)^2$'s derivative against ϕ .
- Obviously, with WGAN, G_θ no longer minimizes the Jenson-Shannon divergence even given an optimal D_{ϕ^*} .

3.3 Math of WGAN

3.3.1 Infimum and supremum

Most people are familiar with the concept of maximum and minimum. Explicitly, if X is a (partially) ordered set and S a subset, then \bar{s} is the maximum of S iff $\bar{s} \in S$ and $s \leq \bar{s}$ for all $s \in S$. Similarly, \underline{s} is the minimum of S iff $\underline{s} \in S$ and $s \geq \underline{s}$ for all $s \in S$.

The supremum (sup) of S can be defined like this. Let $T = \{t \in X | s \leq t \forall s \in S\}$, which defines the set of elements greater than all members of S . If T is empty, S 's supremum does not exist, otherwise it is the minimum of T . If S has a maximum, it must be the same as S 's supremum. Even if S does not have a maximum, it may still have a supremum. Below are three examples comparing maximum and supremum.

1. $S = \{x | x \leq 2\}$: S 's maximum is 2, and its supremum is 2 as well.
2. $S = \{x | x < 2\}$: S does not have a maximum, but its supremum is 2.
3. $S = \{x | x > 2\}$: S has neither a maximum nor a supremum.

Similar comparisons can be made between minimum and infimum. Informally, if one uses supremum and maximum interexchangeably, little is lost. The same goes for infimum and minimum.

3.3.2 Wasserstein Distance

K-L divergence and J-S divergence are often used to measure the closeness between two distributions. In fact, VAE ([amaires.github.io/VAE](https://github.io/VAE)) uses K-L divergence for optimization and GAN's G_θ minimizes the J-S divergence given an optimal D_{ϕ^*} . Unfortunately, these two measures have discontinuity when two distributions have disjoint supports (the support of a function is the subset of the function domain not mapped to 0). For example, given two distributions defined below:

$$p(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases} \text{ and } p_\theta(x) = \begin{cases} 1 & x = \theta \\ 0 & x \neq \theta \end{cases}$$

It is not hard to figure out their K-L and J-S divergence:

$$KL(p, p_\theta) = \begin{cases} 0 & \theta = 0 \\ \infty & \theta \neq 0 \end{cases} \text{ and } JS(p, p_\theta) = \begin{cases} 0 & \theta = 0 \\ \log 2 & \theta \neq 0 \end{cases}$$

Ideally, we'd like a measure that is smoother. Wasserstein distance is exactly such a function defined as:

$$WS(p_1, p_2) = \inf_{\gamma \in \prod(p_1, p_2)} E_{(x, y) \sim \gamma} \|x - y\|_1$$

where $\prod(p_1, p_2)$ contains all joint distribution of (x, y) such that $p_1(x) = \int \gamma(x, y) dy$ and $p_2(y) = \int \gamma(x, y) dx$. Wasserstein distance is also called earth-mover distance. It informally captures the minimal amount of mass/dirt needs to be moved to turn the shape of p_1 into that of p_2 . Using this definition, the Wasserstein distance between $p(x)$ and $p_\theta(x)$ above can be calculated to be $|\theta|$, which is a continuous function of θ .

In general, however, Wasserstein distance is intractable to calculate. Fortunately, Wasserstein distance has another definition, based on the Kantorovich-Rubinstein duality, which is easier to handle:

$$WS(p_1, p_2) = \sup_{\|f\|_L \leq 1} E_{x \sim p_1} f(x) - E_{x \sim p_2} f(x) \tag{5}$$

where $f(\cdot)$ is any real valued function. $\|f\|_L \leq 1$ means f 's Lipschitz constant is 1. Technically, it means

$$|f(x) - f(y)| \leq \|x - y\|_1 \quad \forall x, y$$

Intuitively, it is equivalent to saying $f(x)$'s value should not change too much as x changes.

Wasserstein distance (5) really captures the contrast maximization idea in Section 1.2 well. The Lipschitz continuity constraint can be approximated by the gradient penalty term introduced in 3.2.

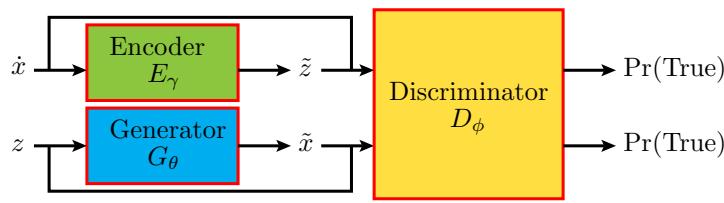


Figure 4: BiGAN architecture

3.3.3 GAN and WGAN

GAN's D_ϕ optimizes maximum likelihood of observing samples \dot{x} and \tilde{x} . Given an optional D_{ϕ^*} , G_θ minimizes the J-S divergence between $p_\theta(x)$ and $p(x)$.

In WGAN, D_ϕ maximizes the Wasserstein distance between \dot{x} and \tilde{x} while G_θ tries to reduce it. Wasserstein distance is a smoother and more effective measure of closeness between two distributions, resulting in more stable training and less mode collapse in WGAN than GAN.

4 Latent Representation and BiGAN

The training of Variational Autoencoders produces both a generator and an encoder. The latter is capable of extracting features or latent representations of data. GAN only has a generator G_θ . It is conceivable that the pre-final layers of the discriminator D_ϕ may be used for feature representations. The intuition is that D_ϕ would have learned useful high-level representations of both real and artificial samples.

Bidirectional Generative Adversarial Networks (BiGAN), depicted in Figure 4, takes a much more direct approach to latent representation. It introduces an encoder E_γ that maps real samples \dot{x} to \tilde{z} in the latent space. D_ϕ works on the joint distribution of (x, z) and tries to maximize the contrast between real samples (\dot{x}, \tilde{z}) and artificial samples (\tilde{x}, z) . The loss function introduced in WGAN-GP can be used here. After training is done, new samples can be generated by G_θ , and latent representations can be inferred via E_γ .

5 Image-to-image translation and CycleGAN

A GAN's generator maps samples drawn from $N(0, I)$ to meaningful images. Can GAN map images in one domain to ones in another domain, for example from summer pictures to winter pictures of the same place, from horse pictures to zebra pictures, and from photos to Van Gogh's paintings?

It is not hard to design a GAN for that purpose. For example, suppose our goal is to add black/white stripes to a horse and make it look like a zebra, we could replace $z \sim N(0, I)$ with a bunch of horse pictures, and the real samples will be drawn from zebra pictures. Unfortunately, this architecture does not ensure that the generated zebra picture will be much like the input horse picture. CycleGAN introduced two innovations to address this problem:

1. Create two GANs. The first GAN translates horse pictures to zebra pictures, and the second GAN translates zebra pictures to horse pictures.
2. Each generated zebra picture is then fed to the second GAN to translate to a horse picture. This generated horse picture should look similar to the original horse picture. A similar process happens with the reverse translation direction.

For simplicity, we'll use the following notation.

Notation	Meaning
x	real samples from domain X
y	real samples from domain Y
D_x	discriminator for samples in X
D_y	discriminator for samples in Y
G_{xy}	generator that maps samples in X to samples in Y
G_{yx}	generator that maps samples in Y to samples in X
$L_{GAN}(X, Y, G_{xy}, D_y)$	GAN's loss function that involves G_{xy} and D_y
$L_{GAN}(Y, X, G_{yx}, D_x)$	GAN's loss function that involves G_{yx} and D_x

CycleGAN's optimization objective is

$$L_{GAN}(X, Y, G_{xy}, D_y) + L_{GAN}(Y, X, G_{yx}, D_x) + \lambda E_x \|G_{yx}(G_{xy}(x)) - x\|_1 + \lambda E_y \|G_{xy}(G_{yx}(y)) - y\|_1$$