
Energy Based Models

Amaires@June 2024

1 Motivation
Essential to generative learning is the modeling of the probability density function (PDF) of given data. In theory, a deep neural network
fθ is capable of approxmating any function. fθ in general, however, is not a valid PDF which has two fundamental requirements:

Non-negativity: fθ(x) ≥ 0

Normalization:
∫
fθ(x) = 1

The non-negativity requirement is not hard to satisfy with simple transformations applied to fθ. For example, exp(fθ(x)) and f2θ (x) are
both non-negative.

The normalization requirement, however, is much harder to satisfy. There are a few approaches to this problem.

1. Generative Adversarial Network (GAN) does not model the PDF or rely on the PDF for training. Instead, it only creates a model
that can draw samples from.

2. Autoregressive models break the PDF into the product of a series of conditional PDFs.

3. Normalizing flow models use a sequence of bijective mappings to transform relatively simple distributions to the desired PDF.

4. Variational AutoEncoders (VAE) optimizes the upper bound of likelihoods. Like GAN, it does not produce a true PDF at the end
either.

Energy Based Models (EBM) take a different approach. EBM only models a non-normalized function Eθ(x) with the expecation that the
actual PDF will be

pθ =
exp(Eθ(x))

Zθ
, where Zθ =

∫
exp(Eθ(x))

Zθ, the normalization numerator and a function of θ but not x , is also called the partition function. EBM has some of its roots in statistical
physics and hence the name Energy Based Models. Eθ(x), or in literature −Eθ(x), is called the energy function. Without the normalization
requirement, and unlike autoregressive models and normalizing flow models, EBM can give Eθ more flexibity and potentially make it more
powerful.

Since EBM only explicitly model Eθ, but not Zθ or pθ, so any task that strictly requires pθ is out of the question. Eθ, however, is
sufficient for comparing pθ(x1) and pθ(x2) since

pθ(x1) > pθ(x2)⇐⇒ exp(Eθ(x1)) > exp(Eθ(x2))⇐⇒ Eθ(x1) > Eθ(x2) (1)

This property is enough to enable a lot of practical deep learning applications such as object recognition, paining restoration and sequence
labeling etc.

2 Sampling
Since EBMs do not explicitly model pθ, how are samples drawn given Eθ?

The Metopolis-Hastings Markov Chain Monte Carlo (M-H MCMC) method described in Algorithm 1 is a relatively simple solution.
The * step ensures that sufficient space of x is sampled and that the algorithm does not get stuck with local maximum. The M-H MCMC
method works in theory, but can take a very long time to converge.

One obvious way to speed up the M-H MCMC method is to take advantage of the gradient of pθ with respect to x and use it to find x
with higher probability. That gradient still depends on Zθ however as

∇xpθ(x) =
1

Zθ
exp(Eθ(x))∇xEθ(x).

Fortunately the gradient of log pθ(x), also called the score function sθ(x) only depends on Eθ(x) because

sθ(x) = ∇x log pθ(x) = ∇xEθ(x)−∇x logZθ = ∇xEθ(x).

The last step of the derivation works because Zθ does not depend on x and hence ∇x logZθ = 0. The Langevin MCMC method, described
in Algorithm 2, works exactly by levaraging sθ(x). Again, the randomization in the * step helps the algorithm get out of local maximum
and sample more space of x.

1



Algorithm 1 Metropolis-Hastings Markov Chain Monte Carlo method
x:=norm_random()
until convergence:

y :=x+ε·norm_random()
if Eθ(y) > Eθ(x):

x := y

else:

with probability exp(Eθ(y)− Eθ(x)):
x := y [*]

return x

Algorithm 2 Langevin MCMC method
x :=norm_random()
until convergence:

x := x+ ε · sθ(x) +
√
2ε·norm_random() [*]

return x

3 Training
There are multiple different ways of training EBMs. Some require sampling from the model being trained, and others do not.

3.1 Maximum Likelihood Method or Contrastive Divergence
Surprisingly, it is possible to conduct maximum likelihood optimization for EBM without modeling the PDF. Let’s start with a little math:

maxEx∼p(x) log pθ(x) = max
θ
Ex∼p(x)[Eθ(x)− logZθ]

= max
θ

[Ex∼p(x)Eθ(x)− logZθ]

The likelihood gradient for updating θ is

∇θ[Ex∼p(x)Eθ(x)− logZθ] = Ex∼p(x)∇θEθ(x)−∇θ logZθ

= Ex∼p(x)∇θEθ(x)−
1

Zθ
∇θZθ

= Ex∼p(x)∇θEθ(x)−
1

Zθ
∇θ[

∫
exp(Eθ(x))dx]

= Ex∼p(x)∇θEθ(x)−
1

Zθ

∫
∇θ exp(Eθ(x))dx

= Ex∼p(x)∇θEθ(x)−
1

Zθ

∫
exp(Eθ(x))∇θEθ(x)dx

= Ex∼p(x)∇θEθ(x)−
1

Zθ

∫
exp(Eθ(x))∇θEθ(x)dx

= Ex∼p(x)∇θEθ(x)−
∫

1

Zθ
exp(Eθ(x))∇θEθ(x)dx

= Ex∼p(x)∇θEθ(x)−
∫
pθ(x)∇θEθ(x)dx

= Ex∼p(x)∇θEθ(x)− Ex∼pθ(x)∇θEθ(x)

Note that the first term involves p(x), the second term involves pθ(x), and neither depends on Zθ. Also note that here the likelihood
gradient is with respect to θ, the parameters, not x. Don’t confuse it with the score function, which is a gradient with respect to x. The
likelihood gradient points in the direction where the energy function’s gradient differs the most between real samples and model samples.
This is probably where the name Contrastive Divergence got its name.

The big picture here is that even though the partition function Zθ is not modeled, it is still possible to estimate the likelihood function’s
gradient and conduct maximum likelihood training. Each training step though requires drawing samples from the model being trained,
which can be expensive, as described in Section 2.

3.2 Score Matching
If ∇xp(x) and ∇xpθ(x) are equal everywhere, then p(x) = pθ(x)+constant. Therefore, if ∇x log p(x) and ∇x log pθ(x) are equal everywhere,
then log p(x) = log pθ(x)+constant. That constant difference can be removed since both p(x) and pθ(x) have to integrate to 1.

2



That is the key idea behind score matching, a method that matches the scores or score functions of two distributions everywhere as an
alternative to maximum likelihood based training. The objective of score matching is to minimize the Fisher Divergence between p(x) and
pθ(x):

min
θ
FD(p(x), pθ(x)) = min

θ

1

2
Ex∼p(x) ‖∇x log p(x)−∇x log pθ(x)‖

2
2

= min
θ

1

2
Ex∼p(x) ‖∇x log p(x)−∇xEθ(x)‖

2
2

We’ll show how this objective can be manipulated to not dependent on the unknown p(x) in the univariate case.

min
θ

1

2
Ex∼p(x) ‖∇x log p(x)−∇xEθ(x)‖

2
2 = min

θ

1

2

∫
p(x)[log′ p(x)− E

′

θ(x)]
2

= min
θ

1

2

∫
p(x)[(log′ p(x))2 + (E

′

θ(x))
2 − 2 log′ p(x)E

′

θ(x)]

= min
θ

[
1

2

∫
p(x)(log′ p(x))2 +

1

2

∫
p(x)(E

′

θ(x))
2 −

∫
p(x) log′ p(x)E

′

θ(x)] (2)

The first term does not depend on θ, and can therefore be left out. The third term still has log′ p(x) in it. Recall the integration by parts
formula states that ∫ b

a

u(x)v′(x)dx = u(x)v(x)|ba −
∫ b

a

u′(x)v(x)dx

and it can be used the rewrite the third term:∫
p(x) log′ p(x)E

′

θ(x) =

∫
p(x)

1

p(x)
p′(x)E

′

θ(x)

=

∫
p′(x)E

′

θ(x)

= p(x)E
′

θ(x)|+∞−∞ −
∫
p(x)E

′′

θ (x)

= 0−
∫
p(x)E

′′

θ (x) (3)

= −Ex∼p(x)E
′′

θ (x) (4)

The derivation of (3) makes the very reasonable assumption that lim+∞ p(x) = lim−∞ p(x) = 0.
Eliminating the first term in (2), rewriting the second term in the expectation form, and subtituting the third term with (4), we have

min
θ

[
1

2
Ex∼p(x)(E

′

θ(x))
2 + Ex∼p(x)E

′′

θ (x)] = min
θ
Ex∼p(x)[

1

2
(E
′

θ(x))
2 + E

′′

θ (x)].

The multivariate version of the objective can be shown to be

min
θ
Ex∼p(x)[

1

2
‖∇θEθ(x)‖22 + tr(∇2

θEθ(x))]

where the second term is the trace of the Hessian matrix of Eθ(x). Loosely speaking, the first term tries to find θ such that the samples x
are the local maximums or minimums (with gradients as close to 0 as possible), and the second term tries to make sure it is actually local
maximums (with second order gradients as negative as possible).

The score matching training method avoids the very expensive procedure of drawing samples from the model being trained. Its main
expensive operation is the computation of the trace of the Hessian matrix. There are more research in this space that will be explored in
future tutorials.

3.3 Noise Contrastive Estimation
Noise Contrastive Estimation (NCE) is another training method for EBMs without requiring drawing samples from the models being
trained. Recall that in Generative Adversarial Networks (GAN) (amaires.github.io/GAN), given a fixed Generator Gφ, the optimal
Discriminator Dθ’s output is

Dθ∗(x) =
p(x)

p(x) + pφ(x)

The result holds if Gφ and pφ are replaced with any static known noise distribution pn(x). That is

Dθ∗(x) =
p(x)

p(x) + pn(x)

Note here n is not a parameter; it just means noise.
If Dθ’s neural network is explicitly constructed as

Dθ(x) =
Fθ(x)

Fθ(x) + pn(x)

3



then
Dθ∗(x) =

p(x)

p(x) + pn(x)
' Fθ∗(x)

Fθ∗(x) + pn(x)

solving it basically shows that Fθ∗(x) ' p(x) which also means Fθ(x) is automatically normalized if all stars are aligned. Now if Fθ(x) is
replaced with an energy function based PDF function

exp(Eθ(x))

Z

where Z is an additional parameter, which is not guaranteed to be equal to Eθ(x)’s partition function Zθ, we have

Dθ,Z(x) =
exp(Eθ(x))

Z
exp(Eθ(x))

Z + pn(x)
=

exp(Eθ(x))

exp(Eθ(x)) + Zpn(x)
(5)

and
exp(Eθ∗(x))

Z∗
' p(x)

where Eθ∗ would be our trained energy model.
With Dθ constructed as in (5), Dθ’s optimization objective becomes

max
θ,Z

Ex∼p(x) logDθ,Z(x) + Ex∼pn(x) log(1−Dθ,Z(x))

=max
θ,Z

Ex∼p(x)[Eθ(x)− log(exp(Eθ(x)) + Zpn(x)] + Ex∼pn(x)[log(Zpn(x))− log(exp(Eθ(x)) + Zpn(x)]

3.4 Flow Contrastive Estimation
In theory, there are no requirements on the static noise distribution pn(x) for NCE. In practice, the closer pn(x) is to p (but not identical),
the more effective NCE is. Flow Contrastive Estimation parameterizes pn(x) as pφ(x) with a normalizing flow model because normalizing
flow models are easy to sample and give tractable PDF. The discriminator is now modeled as

Dθ,Z,φ(x) =
exp(Eθ(x))

exp(Eθ(x)) + Zpφ(x)

and the objective function is
max
θ,Z

min
φ
Ex∼p(x) log(Dθ,Z,φ(x)) + Ex∼pφ(x) log(1−Dθ,Z,φ(x))

4


