Energy Based Models

Amaires@June 2024

1 Motivation

Essential to generative learning is the modeling of the probability density function (PDF) of given data. In theory, a deep neural network
fo is capable of approxmating any function. fy in general, however, is not a valid PDF which has two fundamental requirements:

Non-negativity: fo(z) >0
Normalization: [fp(z) =1

The non-negativity requirement is not hard to satisfy with simple transformations applied to fp. For example, exp(fp(z)) and f3(z) are
both non-negative.
The normalization requirement, however, is much harder to satisfy. There are a few approaches to this problem.

1. Generative Adversarial Network (GAN) does not model the PDF or rely on the PDF for training. Instead, it only creates a model
that can draw samples from.

2. Autoregressive models break the PDF into the product of a series of conditional PDFs.
3. Normalizing flow models use a sequence of bijective mappings to transform relatively simple distributions to the desired PDF.

4. Variational AutoEncoders (VAE) optimizes the upper bound of likelihoods. Like GAN, it does not produce a true PDF at the end
either.

Energy Based Models (EBM) take a different approach. EBM only models a non-normalized function Ey(z) with the expecation that the
actual PDF will be
exp(Ey(z))

pg = ————>, where Zy = /GXP(EG(I))
Zy

Zjy, the normalization numerator and a function of # but not z , is also called the partition function. EBM has some of its roots in statistical
physics and hence the name Energy Based Models. Ey(x), or in literature —FEy(z), is called the energy function. Without the normalization
requirement, and unlike autoregressive models and normalizing flow models, EBM can give Ey more flexibity and potentially make it more
powerful.

Since EBM only explicitly model Ejy, but not Zy or py, so any task that strictly requires py is out of the question. Fjy, however, is
sufficient for comparing pg(z1) and pe(z2) since

po(x1) > po(x2) < exp(Ey(x1)) > exp(Fy(x2)) <= Eg(x1) > Eg(x2) (1)

This property is enough to enable a lot of practical deep learning applications such as object recognition, paining restoration and sequence
labeling etc.

2 Sampling

Since EBMs do not explicitly model pg, how are samples drawn given Ey?

The Metopolis-Hastings Markov Chain Monte Carlo (M-H MCMC) method described in Algorithm 1 is a relatively simple solution.
The * step ensures that sufficient space of x is sampled and that the algorithm does not get stuck with local maximum. The M-H MCMC
method works in theory, but can take a very long time to converge.

One obvious way to speed up the M-H MCMC method is to take advantage of the gradient of py with respect to z and use it to find x
with higher probability. That gradient still depends on Zy however as

1
Vapo(z) = 7 exp(Ep(z)) Vi Eg(x).
Fortunately the gradient of log py(z), also called the score function sy(z) only depends on Fy(z) because

sp(x) =V, logpe(x) = Vi Ep(x) — V,log Zg = V, Ep(x).

The last step of the derivation works because Zy does not depend on x and hence V, log Zy = 0. The Langevin MCMC method, described
in Algorithm 2, works exactly by levaraging sy(z). Again, the randomization in the * step helps the algorithm get out of local maximum
and sample more space of x.

Algorithm 1 Metropolis-Hastings Markov Chain Monte Carlo method
x:=norm_random()
until convergence:

y :=x+e-norm_random()
if Ey(y) > Ep(x):

T =y
else:
with probability exp(Fy(y) — Eg(x))
Ti=y [*]
return r

Algorithm 2 Langevin MCMC method

2 :=norm_random()
until convergence:

r =1+ ¢ 5¢(x) + v2enorm_random() [*]

return x

3 Training

There are multiple different ways of training EBMs. Some require sampling from the model being trained, and others do not.

3.1 Maximum Likelihood Method or Contrastive Divergence
Surprisingly, it is possible to conduct maximum likelihood optimization for EBM without modeling the PDF. Let’s start with a little math:
max Exwp(:c) log py(z) = IH?X Ezwp(:c) [Eg(x) — log Zo|

= meaX[EmNp(m)Eg (z) — log Zy]

The likelihood gradient for updating 6 is
VQ[EwNp(w)EO(I) - IOg Z«‘)] = Exwp(x)VOE«‘)(z) -V log Zg

1
= EmNp(x)VQEG(m) — ZV@Z@
1
= Epmp(a)VoEo(1) — Zve[/ exp(Ey(z))dz]

1
= wNp(w)VQE‘g(I) — Z/VQ eXp(Eg(CC))dI’

1
= wNp(w)VQEg(IC) - Z—g/exp(Eg(x))VgEg(x)d:c

1
= Eppz)VoLo(x) — Z—a/exp(Eg(:c))VgEg(x)dm

1
= Eyp(a) VoL (x) —/Z—Qexp(Eg(x))VgEg(x)dx

= Emwp(x)V9E9($> — /pg(a?)VgEg(.’L’)dx
= Eprp(a)VoEo(7) — Epropy(a)VoLo()

Note that the first term involves p(x), the second term involves py(x), and neither depends on Zy. Also note that here the likelihood
gradient is with respect to @, the parameters, not x. Don’t confuse it with the score function, which is a gradient with respect to x. The
likelihood gradient points in the direction where the energy function’s gradient differs the most between real samples and model samples.
This is probably where the name Contrastive Divergence got its name.

The big picture here is that even though the partition function Zy is not modeled, it is still possible to estimate the likelihood function’s
gradient and conduct maximum likelihood training. Each training step though requires drawing samples from the model being trained,
which can be expensive, as described in Section 2.

3.2 Score Matching

If Vop(z) and Vpo(z) are equal everywhere, then p(x) = pg(x)+constant. Therefore, if V, log p(x) and V, log pg(x) are equal everywhere,
then log p(z) = log pg(x)+constant. That constant difference can be removed since both p(x) and py(x) have to integrate to 1.

That is the key idea behind score matching, a method that matches the scores or score functions of two distributions everywhere as an
alternative to maximum likelihood based training. The objective of score matching is to minimize the Fisher Divergence between p(x) and

po(x):
. 1
in FD(p(a).py()) = min 2 B,y [V log (@) — Vs Lok (o)
o1
= Inem iErwp(ac) Hvz Ing(x) - VIEQ(‘T)Hg

We’ll show how this objective can be manipulated to not dependent on the unknown p(z) in the univariate case.

.]- .]. ’
it 5 Eoepto) [V 108 p(0) ~ VaBol@)]; = min 5 [pla)log’p(a) = Ey (o)

—min 5 [p(@)l(08 p(@))? + (Egla))? - 2108’ pla) Ey (o)
—winl [pla)log (@) + 5 [ple) (Ey(@)? ~ [pla)log p(o)Ey(a)] 2

The first term does not depend on @, and can therefore be left out. The third term still has log’ p(z) in it. Recall the integration by parts
formula states that

b b
/ u(z)v' (z)de = u(z)v(z)® —/ o' (z)v(z)dx

and it can be used the rewrite the third term:

= _Ezwp(z)EB (x) (4)

The derivation of (3) makes the very reasonable assumption that lim . p(z) = lim_ p(z) = 0.
Eliminating the first term in (2), rewriting the second term in the expectation form, and subtituting the third term with (4), we have
1

. 1 ’ " . ’ "
meln[iEpr(z) (Ee(l'))Q + Em~p(:1:)E0 (Z‘)] = Hbln EmNp(m)[i(EQ(m))Q + EG (%)]

The multivariate version of the objective can be shown to be
. 1 2
min By [5 Vo Eo ()5 + (V5 Eo ()]

where the second term is the trace of the Hessian matrix of Fy(x). Loosely speaking, the first term tries to find 6 such that the samples x
are the local maximums or minimums (with gradients as close to 0 as possible), and the second term tries to make sure it is actually local
maximums (with second order gradients as negative as possible).

The score matching training method avoids the very expensive procedure of drawing samples from the model being trained. Its main
expensive operation is the computation of the trace of the Hessian matrix. There are more research in this space that will be explored in
future tutorials.

3.3 Noise Contrastive Estimation

Noise Contrastive Estimation (NCE) is another training method for EBMs without requiring drawing samples from the models being
trained. Recall that in Generative Adversarial Networks (GAN) (amaires.github.io/GAN), given a fixed Generator G, the optimal
Discriminator Dy’s output is

p(x)
p(x) + po()
The result holds if G and p, are replaced with any static known noise distribution p,,(x). That is

D« () =

Dpe(a) = P

Note here n is not a parameter; it just means noise.
If Dy’s neural network is explicitly constructed as

then
p(x) o For(2)
p(x) +pn(x) — Fo- () + palz)
solving it basically shows that Fy-(x) ~ p(z) which also means Fy(z) is automatically normalized if all stars are aligned. Now if Fy(x) is
replaced with an energy function based PDF function

Dg* (CL‘) =

exp(Ey(z))
VA

where Z is an additional parameter, which is not guaranteed to be equal to Ey(z)’s partition function Zy, we have

xp(E,
M B exp(Ep(x))

De,Z(x) = w +pn($) B exp(Eg(ﬂL‘)) + an(x) ?
and E
w ~ p()

where Eyg« would be our trained energy model.
With Dy constructed as in (5), Dy’s optimization objective becomes

max Eqppx)log Do z(x) + Egpp, () log(1 — Dy, z(z))

=10ax By (o) [Ep () — log(exp(Ey (2)) + Zpn ()] + Einp, (z) [l0g(Zpn () — log(exp(Hp(x)) + Zpn(2)]

3.4 Flow Contrastive Estimation

In theory, there are no requirements on the static noise distribution p,,(x) for NCE. In practice, the closer p,(z) is to p (but not identical),
the more effective NCE is. Flow Contrastive Estimation parameterizes p,(z) as pe(x) with a normalizing flow model because normalizing
flow models are easy to sample and give tractable PDF. The discriminator is now modeled as

B exp(Ee(CU))
Do,z,6(2) = exp(Ep(7)) + Zpy ()

and the objective function is

1101aZX m(;n Em,\,p(z) log(D97z7¢(x)) + Ew~p¢(m) log(l — DO,Z,QS(Q:))

